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Abstract

Black bears (Ursus americanus) are an iconic and common species throughout much of the

United States and people regularly interact with these large predators without conflict. How-

ever, negative interactions between people and bears can manifest in conflicts that can hin-

der conservation efforts. Black bears are highly attracted to anthropogenic sources of food,

and negative interactions with people are primarily a product of trash mismanagement. In

the Catskills region of New York State, home to a large population of black bears, over 400

such conflicts are reported each year. While the New York Department of Environmental

Conservation (DEC) has seen progress recently in educating residents of the region on how

to reduce unwanted interactions with bears, they have had less success educating the 12

million tourists that visit the Catskills each year. Understanding where conflict may occur in

the future, and the environmental and anthropogenic factors that precede it, may help guide

management strategies to reduce these unwanted interactions. Therefore, we designed

resource selection probability functions (RSPFs) to examine the relationship between

human-black bear conflicts in the Catskills with a suite of landscape and anthropogenic

data, using conflicts reported to the DEC across the state of New York in 2018–2019. We

found that human-black bear conflicts were more likely to occur in the residential areas of

the Catskills on the urban-wildland interface; areas with relatively higher human population

densities, away from dense forest, and further from heavily urbanized areas. While future

work is needed to continuously validate our model predictions, our results will provide the

DEC and other conservation managers in the Catskills the ability to create more targeted

plans for mitigating unwanted human-black bear interactions, and provide a better under-

standing of the mechanisms driving human-carnivore interactions at an urban-wildland inter-

face more generally.
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Introduction

Interactions between people and large carnivores create conflicts that are among the most

common and widespread conservation challenges in the world [1]. Despite their abundance,

human-carnivore conflicts can be notoriously difficult to manage, due to the ecological impor-

tance of large carnivores and their perceived or real threat to human livelihoods [2–4]. Large

carnivores are essential, often keystone species in many ecosystems throughout the globe [5],

and serve an important role in many cultural systems [3]. However, these same species can

cause injuries to people, depredate livestock, and interact with humans in other negative ways

[6, 7]. The complexities of human-carnivore interactions vary across species, land use types,

and cultural norms, so finding ways to manage the social, ecological, and economic impacts

conflict requires extensive local knowledge and an understanding of the underlying factors

that delineate these negative interactions [2, 3, 6].

In one example of widespread human-carnivore interactions, conflicts between people and

the American black bear (Ursus americanus) have been steadily increasing throughout the

United States in recent decades [8–10]. Populations of both black bears [11, 12] and humans

have grown country-wide, leading to more interactions between people and bears [13]. Black

bears have a keen sense of smell and can become highly attracted to anthropogenic sources of

food, especially during their period of hyperphagia before hibernation [14, 15]. As a result,

black bears often enter suburban and residential areas [13], can become reliant on anthropo-

genic food sources, become habituated to human presence, and may damage private property

[16–18]. Black bears are considered to be the least aggressive of all North American bears, and

few of these interactions have resulted in injury or death to people [13]. However, in extreme

cases, negative interactions between humans and black bears can lead to the euthanization of

overly aggressive “problem” animals [19, 20], or injury to people. Mitigating conflicts between

people and black bears in the United States is difficult due to bears’ wide distribution and

adaptability, especially as urbanization and exurban developments increase [13, 21]. Therefore,

finding effective solutions to reduce the number of interactions between people and black

bears is critical.

In the Catskills region of New York State (Fig 1), conflicts with black bears are a concern to

local resource managers, governments, and residents. The Catskills is a mountainous region

200km north of New York City popular with both year-round residents and tourists (and the

location of the famous Woodstock concerts). Currently over 2000 black bears inhabit the Cats-

kills region—an almost tenfold increase since the 1970s [22]. This continued increase is due to

successful conservation programs implemented by the New York Department of Environmen-

tal Conservation (DEC) and other wildlife organizations [23]. From 2018–2019, 842 com-

plaints were registered with the DEC on black bears in the region (Fig 1). Recently, the DEC

has created a number of management approaches to reduce human-black bear interactions.

The hunting season was extended in an effort to manage growing black bear populations, with

the firearm season beginning 16 days earlier in September in the Catskills and Western Hud-

son Valley [23]. This extension allowed for 584 Catskill black bears to be harvested during the

first year of its extension (2014), compared to 451 the previous year [23, 24]. Additionally,

bear-proof garbage dumpsters are becoming more widespread in some regions of the Catskills

[23, 25], and the DEC continues to promote education on bear-safety in the region. Nonethe-

less, conflict with black bears persist.

Despite the success of the DEC in reducing unwanted interactions between black bears and

residents in the Catskills, there has been less success with short-term visitors (L. Bifaro, pers.

comm.). Coinciding with the recent growth of black bear numbers in the region is a substantial

increase in the Catskills tourist population. Every year the Catskills region welcomes 12 million
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tourists [26], many of whom use rental sites like AirBnB and Vrbo to locate short-term accom-

modations. Thousands of short-term visitors rent the 4,376 available homes in the Catskills

each year (data: AirDNA, Denver, U.S.), yet little has been done to ensure that these tourists

are aware of how to properly manage trash in an area with abundant black bears. There is little

precedent throughout the country on how to successfully educate transient visitors to tourist

regions, which is important given that many are unaware of the dangers of black bears and

some even actively attempt to attract them [27]. In other areas with long-established black bear

and tourist populations, such as the Lake Tahoe region in Nevada, reducing interactions

between tourists and black bears is similarly challenging [27].

While the DEC has recently engaged with efforts to create an educational program

designed to inform tourists to the Catskills on bear-safe behaviors, work is needed to deter-

mine how and where to most effectively distribute it. Our study addressed this latter need by

mapping and modeling human-black bear conflicts in the region. Using data on human-

black bear interactions collected by the DEC throughout the state, we built Resource Selec-

tion Probability Function models (RSPFs) that examine the relationship between these inter-

actions and a suite of landscape and anthropogenic variables. Our results will provide the

DEC with a tool to effectively target areas to implement their educational program for tour-

ists, promote a safer coexistence between an iconic Catskills species and the tourists vital to

the region, and highlight a method for predicting and managing human-wildlife conflicts

more broadly.

Fig 1. Human-black bear interactions (n = 842) recorded by the NYDEC in 2018 and 2019. Catskill counties are Greene, Delaware, Sullivan, and Ulster.

https://doi.org/10.1371/journal.pone.0257716.g001
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Methods

Study area & conflict data

Data on interactions between humans and black bears is recorded by the DEC by compiling

information from their responses to complaints submitted by the public. For each recorded

interaction, the DEC noted the type of complaint (livestock injury, residential damage, illegal

feeding, etc.), the address, and the severity of the incident (denoted by classes 1 to 4, 1 being the

most severe). We were provided with all recorded instances of human-black bear conflict in the

entire state from January 1, 2018- through December 31, 2019. In that time, 2,589 conflicts

occurred statewide; 842 of which were located in the Catskills. Because black bears are general-

ists [28, 29] and not confined to political boundaries of the Catskills, we used all incidences in

New York State to build our predictive models, mapped conflict throughout the entire state,

and reported our specific findings for the region. Black bears’ range in New York covers most of

the state, and the species occurs throughout the entire Catskills region [30]. The Catskills region

is primarily forested (82%), with pockets of grassland (9%), urban areas (4%), and cropland

(2%). The region is relatively stable with regards to major changes in land use or topography.

The 2,589 locations of conflict were spatially thinned by 5km in R Studio Version 1.2.5033

[31, 32] using a randomization algorithm in the package “spThin” [33]. Thinning location data

is often necessary to reduce spatial autocorrelation between points [33]; 5km was selected

because of its relevance to the average black bear home range size of about 25km2 [34]. Addi-

tional points were excluded if their locations were obviously reported erroneously, such as

those reported in Long Island and New York City where there have been no confirmed sight-

ings of black bears in recent years. This left 683 remaining locations that could be used to build

models. For the same reasoning as the thinning process, a 5km buffer was then created around

each of those conflict locations in QGIS. These buffers were then subtracted from the area of

New York State, and 3,415 random locations were generated within the remaining extent (> 5

for each conflict location; [34]). These random locations served as proxies for “non-conflict”

locations, in order to compare regions where conflict occurred with those where it did not.

GIS layers

Twelve environmental, landscape, and anthropogenic variables were selected to model

human-black bear conflicts (Table 1). General landscape characteristics, such as elevation,

aspect, terrain ruggedness, and land cover are often used when modeling species distributions

or human-wildlife conflicts [34–37]. Forest density, distance to forests, and distance to

streams, were selected because of their biological relevance to black bear habitat as described

by previous literature [34, 38]. Lastly, anthropogenic variables (human population density,

road density, distance to roads, distance to urban areas, and distance to recreational areas)

were chosen to predict the distribution of human influence. Distance layers were built in Arc-

GIS Pro 10.6 [39] using the Euclidean Distance tool. Land cover was reclassified from its origi-

nal sixteen categories to just eight: forest, urban, shrubland, grassland, barren/minimal

vegetation, agriculture, wetland, and water. In order to reduce the influence of extreme outliers

on our models’ outputs, distance to forests and population density data were log-transformed

before analyzing. All layers were projected to NAD83 UTM Zone 18N coordinate reference

system (EPSG:26918), cropped to the exact same extent (xmin, xmax, ymin, ymax = 1597585,

2345800, -307196, 350164), and resampled to a 50-meter resolution using the nearest neighbor

method in R. Values at each conflict and non-conflict location were extracted from each covar-

iate in ArcGIS Pro. It is important to note a potential temporal mismatch between our conflict

data (2018–2019) and some of our GIS data (2000–2019; Table 1).
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Model selection and data analysis

Resource Selection Probability Functions (RSPFs) are commonly used to model large carni-

vores’ distribution, movements, mortality, and interactions with people [34, 40–42]. RSPFs

operate under the assumption that certain portions of a landscape are used disproportionately

[43]. RSPFs generally adhere to the following equation [34, 40]:

w xð Þ ¼
exp ðb0 þ b1x1 þ . . . bnxnÞ

1þ exp ðb0 þ b1x1 þ . . . bnxnÞ
Eq 1

where w�(x) equals the probability of conflict at a given location, x refers to the set of covariates

used, and β are the parameters of the model.

We generated RSPFs in R Studio using the package “Resource Selection” [43]. We set “m”,

which defines the matching of conflict and non-conflict points, to 0 and “B”, which sets the

number of bootstrap iterations to run, to 1000 [43]. Before creating models, we assessed collin-

earity between covariates based on the inspection of variance inflation factors (VIFs); variables

with a VIF above 10 were removed from the model [44, 45]. None of the variables met this cri-

terion for collinearity, and therefore all were retained. We also examined correlation between

covariates by building a correlation matrix; for covariates that shared an R2 coefficient greater

than 0.7 [46], the one hypothesized to be more relevant to black bears or conflict would be

retained. No two variables shared an R2 that exceed this threshold; therefore, all were consid-

ered. We examined all possible models derived from a combination of our twelve covariates

using the “MuMIn” package in R [47]. We selected the model with the lowest AIC value [48].

For models with comparative AICs (ΔAIC > 2.0), the one with the fewer terms was selected

[49].

Table 1. Description of the environmental, landscape, and anthropogenic variables used to model human-black bear conflicts in the Catskills.

Variable Description Data Type Units Year

Created

Source

Elevation Height above sea level Continuous Meters 2000 WorldClim

Aspect Compass direction of slope Continuous Degrees 2000 Generated in QGIS using the

“Elevation” layer

Terrain ruggedness Describes the amount of elevation change between

neighboring grid cells

Continuous Index 2000 Generated in QGIS using the

“Elevation” layer

Human population

density

Density of human population Continuous People/km 2019 LandScan

Land cover Classification of land cover type Categorical N/A 2013 ESRI Living Atlas

Road density Density of roads Continuous Km of road/km

raster cell

2014 ESRI Living Atlas

Distance to roads� Straight line distance to major roads Continuous Meters 2019 US Census TIGER Shapefiles

Distance to� streams Straight line distance to streams Continuous Meters 2014 NY DEC

Distance to urban

areas�
Straight line distance to urban areas (human

population density > 500k)

Continuous Meters 2010 ESRI Living Atlas

Distance to recreational

areas�
Straight line distance to recreational areas (parks,

campsites, picnic areas, etc.)

Continuous Meters N/A NY DEC

Distance to forest

cover�
Straight line distance to forest cover Continuous Meters 2016 ESRI Living Atlas

Forest density (canopy

cover)

Proportion of each pixel covered by tree canopy Continuous Percent 2016 ESRI Living Atlas

� denotes layers created in ArcGIS using the Euclidean Distance tool.

https://doi.org/10.1371/journal.pone.0257716.t001
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Model validation

To justify our use of data from throughout New York State to make predictions in the Cats-

kills, we examined the predictive power of our model by spatially subsetting our data in two

ways. First, we used data from outside of the Catskills region to train our model (conflicts = 543,

non-conflicts = 3159), and data from within the region to test it (conflicts = 140, non-con-

flicts = 256). We also used k-fold cross-validation across the entire state-wide dataset to deter-

mine overall predictive power. We evaluated the predictive ability of our models by calculating

area-under-the-curve (AUC) values and omission error. The AUC measures the area under

the receiver operator curve (ROC), and provides a value between 0 and 1 which describes the

predictive power of a model [50]. A model with an AUC of 0.5 is no better than a random

guess, and a model with an AUC of 1.0 is completely predictive [50]. Typically, models with an

AUC over 0.7 or 0.8 are considered to be robust [50]. Omission error describes the proportion

of conflict and non-conflict locations that were incorrectly identified by our model based on a

certain threshold; we chose to use an equal sensitivity and specificity threshold [51]. If our

statewide model was deemed sufficiently representative of the Catskills (AUC> 0.7 and overall

omission error < 0.3), we then applied k-fold cross-validation to test the predictive power of

the most parsimonious model [52, 53]. We subsetted the statewide data into five random k-

fold groups; four were used to train the model and one was used to test it. This process was

repeated four times, to ensure that each group was used as the testing dataset once. If cross-val-

idation yielded models with a high predictive power (AUC > 0.7 and overall omission

error< 0.3), we then retrained a model with all data and projected its outputs as a map of con-

flict hotspots throughout New York State. We created this map using the “Raster” package

[54] in R Studio, cropped it to the extent of the Catskills, then refined it in ArcGIS Pro for

improved visualization.

Results

Human-black bear conflicts

Of the 842 conflicts recorded by the DEC in 2018 and 2019 in the Catskills region, 39% (325)

of them were classified as garbage break-ins (Fig 2). Contact with humans (4 occurrences), ille-

gal feeding (5 occurrences) and campground issues (9 occurrences) were the rarest types of

interactions (Fig 2). Based on the DEC’s severity class system, in which 1 is an interaction of

the highest severity and 4 of the least, 15% were highly severe (1), 84% were mildly severe (2–

3), and 1% were not severe at all (4).

Model outputs

The most parsimonious model included seven covariates: elevation, distance to forests, land

cover, human population density, distance to recreational areas, road density, and distance to

urban areas (Table 2). Our parsimonious model determined that all continuous covariates,

with the exception of road density (p = 0.828), were significantly correlated with the probabil-

ity of human-black bear conflicts (Table 3). All significant continuous covariates were posi-

tively correlated with conflict, suggesting that as they increased so did the probability of any

conflict occurring. Human-black bear conflict was also significantly and negatively correlated

with a variety of land cover classes including forests (p< 0.001) and urban areas (p< 0.001).

Model validation

We determined the ability of our statewide model to accurately represent the Catskills region

by using data from outside the Catskills to train the model, and data from within the region to
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test the model. This test yielded an AUC value of 0.801, and an overall omission error of 0.291

(0.326 for conflict locations, 0.254 for non-conflict locations). Using k-fold cross validation

across the state-wide dataset generated models that varied in AUC, AIC, and omission error

(Table 4). All data were then recompiled, and the model produced was then projected to map

human-black bear interactions in the region (AIC = 10283.4, AUC = 0.795, overall emission

error = 0.234; Fig 3).

Fig 2. Catskills’ human-black bear interactions recorded by the DEC in 2018 and 2019 (n = 842). Bars are color coded by severity class; 1 (blue) is the highest

severity, 4 (yellow) the lowest.

https://doi.org/10.1371/journal.pone.0257716.g002

Table 2. The five “best” RSPF models, based on AIC scores.

# Model df AIC ΔAIC

1 elevation + land cover + distance to forests + population density + distance to

recreational areas + road density + distance to urban areas

14 10283.4 0.0

2 elevation + forest density + land cover + distance to forests + population density

+ distance to recreational areas + road density + distance to urban areas

15 10284.9 1.5

3 elevation + land cover + distance to forests + population density + distance to recreational

areas + distance to streams + terrain ruggedness + distance to urban areas

15 10288.4 5.0

4 elevation + forest density + land cover + distance to forests + population density

+ distance to recreational areas + distance to streams + distance to urban areas

15 10289.0 5.6

5 elevation + land cover + distance to forests + population density + distance to streams

+ terrain ruggedness + distance to urban areas

14 10289.7 6.3

The most parsimonious model is bolded. Distance to forests and population density were log-transformed.

https://doi.org/10.1371/journal.pone.0257716.t002
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Discussion

As black bear populations rebound in many areas alongside the simultaneous growth of human

residential developments, the challenges of mitigating human-bear conflict are growing [13,

21]. Our model reinforces the presumption that anthropogenic presence was the driver of

recent conflicts in New York State; distance to recreational areas, distance to urban areas, and

human population density were each significantly correlated with occurrence of human-black

bear conflicts. The model, created to identify potential hotspots of black bear-human conflict in

the Catskills, had good predictive power and will be helpful for DEC biologists to identify areas

where future tourist education is most needed. We recommend that, even in the Catskills where

conflict is relatively common, the DEC prioritize outreach efforts on areas of higher residential

density and at higher elevations. Our model described the probability of conflict as increasing

further from urban areas and recreational areas, but in areas of higher human population densi-

ties. This is a reasonable reflection of both bear- and human- behaviors: black bears rarely

inhabit highly urbanized areas and fewer humans frequent the natural regions that comprise

recreational areas. In the Catskills, these results suggest that the potential for human-black bear

interactions is likely at its highest in moderately populated areas that are adjacent to public

lands, consistent with research in other regions of New York [55] or on black bears in other

parts of the U.S. [56, 57]. This expected parabolic relationship between anthropogenic variables

and human-wildlife interactions has been described previously in human-wolf conflicts in

Michigan [58]. Given the abundance of trash-related incidents in the Catskills region each year,

human-bear interactions will likely be highest in residential, suburban areas. However, it is

important to note that our results include the likelihood of any conflict with black bears occur-

ring, and was based on conflict reports over a two-year time frame, so they do not predict the

frequency or severity of conflict at any given point. This caveat may suggest that our model is

likely an underestimate of the true level of human-black bear conflict in the region.

Our model provides valuable information on how human-black bear conflicts overlap with

black bear habitat. Black bears are generalists, and are able to live in a variety of ecosystems

and landscapes [28, 29]. Our model predicts that human-bear interactions were more likely to

Table 3. Coefficient estimates for each parameter and its corresponding significance based on the optimal

resource selection probability function model.

Covariate Estimate SE p-value

Elevation 2.65 x 10−3 4.00 x 10−4 < 0.001

Distance to forests 0.022 2.76 x 10−5 < 0.001

Population density 0.774 0.083 < 0.001

Distance to recreational areas 1.59 x 10−5 5.22 x 10−6 0.002

Road density 0.014 0.068 0.828

Distance to urban areas 4.36 x 10−5 8.64 x 10−6 < 0.001

Estimates are not provided for the categorical land cover covariate.

https://doi.org/10.1371/journal.pone.0257716.t003

Table 4. Results of k-fold cross validation.

K-fold AIC AUC Omission Error (Conflicts) Omission Error (Non-Conflicts) Overall Omission Error

1 8021.82 0.808 0.300 0.336 0.247

2 7966.14 0.749 0.422 0.156 0.200

3 8027.70 0.815 0.265 0.272 0.271

4 8004.01 0.777 0.315 0.237 0.250

5 7989.81 0.782 0.182 0.365 0.334

https://doi.org/10.1371/journal.pone.0257716.t004
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occur at higher elevations. Across the state of New York, most highly urbanized areas are

located at lower elevations, while higher elevations include the mountainous regions, such as

the Catskills, that are popular with tourists and for scenic vacation homes. While our model

also suggested that the probability of a human-black bear interaction was highest further from

forests, this result was likely driven by the dense, heavily-forested areas that comprise large

swaths of the more isolated regions of the state. It is imperative to recognize that this conflict

map was built using data on bear conflicts from the entire state of New York, and that conflict

was modeled statewide. Including data from the entire state, not just the Catskills region, is

necessary because wildlife rarely adhere to political boundaries, but lowers the specificity of

our model results. Black bears often move in and out of the Catskills region—therefore these

boundaries cannot be used to constrain models too tightly. While our model did exceed the

minimum AUC threshold required [50], it is likely that human-black bear conflict in other

parts of the state influenced our predictions. Expanding the models to consider a more ecolog-

ically relevant study extent, rather than using geographic boundaries, will improve the model-

ing process but requires data from multiple state wildlife agencies.

Fig 3. Map depicting risk human-black bear conflicts in the Catskills region of New York. Map is based on our optimal RSPF model. Brighter, warmer

colors indicate a higher probability of conflict, while darker, cooler colors represent low-risk areas of conflict.

https://doi.org/10.1371/journal.pone.0257716.g003
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In general, these findings further support the idea that human-black bear conflicts are

expected to occur at the urban-wildland interface, rather than in highly urbanized or wild

areas [55–57]. As such, we expect tourists staying in suburban areas at high elevations to be at

the highest risk of interacting with black bears. Targeting these areas for implementing an edu-

cational program may therefore prove most effective. However, human-wildlife interactions

are complex, especially those involving carnivores. Understanding how to manage potential

conflicts requires incorporating not just ecological knowledge, but social factors as well [6].

Importantly, our underlying data relies on complaint calls to the DEC, which are likely influ-

enced by individuals’ perceptions of conflict which is influenced by demographic and social

variables; [59–63], and their knowledge of when and how to report interactions. We recom-

mend that wildlife agencies collecting reports of human-wildlife conflicts also collect demo-

graphic data, so such data may be incorporated into future modeling efforts. Furthermore,

tourists like those that visit the Catskills may be especially accepting of black bears—as wildlife

is one of the main draws to the region (L. Bifaro pers. comm.). This acceptance may lead to

interactions that are harmful for black bears, but thrilling for tourists. Similarly, regions with

highly educated populations on bear safety may have lower rates of conflict than expected

given our model’s projections. Balancing all of these varying perspectives is a necessary chal-

lenge when interpreting predictive models like ours. Therefore, applying maps and models of

human-wildlife interactions to actual management will require incorporating an expert under-

standing of the social dynamics in the region of interest. In general, managing human-carni-

vore conflicts also often requires very localized knowledge and management [6]. However, our

results may yield insight into patterns of human-black bear interactions more broadly, espe-

cially in regions similar to the Catskills with a large tourist population and urban and natural

areas in close proximity.

Future work is necessary to refine and validate our model’s projections. Our model was

able to differentiate between conflict and non-conflict locations with a high degree of statistical

accuracy. However, the complexity of reality can never be completely captured. We hope our

model will be used in conjunction with expert knowledge, field surveys, and the already estab-

lished methods for reducing conflict employed by the DEC, and it should not be considered a

perfect predictor of future conflict. Previous studies mapping and modeling human-carnivore

conflicts have validated their results with great success. Treves and Rabenhorst (2017) [64], for

example, showed that their model of human-wolf interactions in Wisconsin accurately pre-

dicted 91% of conflicts the three years following its creation. Similar research conducted in

Idaho was able to classify 84% of future wolf-livestock depredations in areas designated as

“high” or “very high” risk for conflict [65].

Human-carnivore conflicts are a persistent, pervasive problem for both wildlife conserva-

tion and human wellbeing. However, wildlife managers often have limited resources to address

human-wildlife conflict issues [66]. Furthermore, areas popular with tourists and the continu-

ing expansion of private home-rental services can present additional challenges for imple-

menting effective education to mitigate conflict, especially when wildlife agencies are already

stretched thin. The use of predictive conflict models is one method for targeting outreach and

education in areas where conflict is most likely to occur. Our model was the first step in that

direction, and shows promise for these methods prioritizing outreach.

Supporting information

S1 File. Dataset containing the values used to generate resource selection probability func-

tion models (RSPFs), excluding location data. Dataset includes the following potential covar-

iates: elevation. The dependent variable (“Conflict”) is binary; “1” denotes a human-black bear
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conflict, “0” denotes a randomly generated non-conflict location. See Table 1 for more infor-

mation about each covariate.

(CSV)

S1 Table. Regression outputs for the most parsimonious resource selection probability

function model (RSPF) that was used to create a map of human-black bear conflict hot-

spots.
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